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INTRODUCTION 

The deep learning methods in the field of Digital Rock Petrophysics (DRP) are quickly 
becoming an attractive technology to process natural rock images. These digitized images are 
used in many engineering calculations, including those for fluid properties, transport mechanics, 
and reservoir characterization. In a standard DRP workflow, segmentation is an essential step to 
characterize several distinct phases and pore space of the rock sample after the 3D image is 
acquired and reconstructed from pore-scale X-ray tomographic imaging. The 3D segmented 
image is then used in numerical analysis of fluid flow properties, transport mechanics, and other 
properties of interest.  

In DRP, there are image segmentation techniques ranging from simple thresholding to multi 
marker-based watershed and active contours algorithms. The methods are substantially reviewed 
in [8]. There are also many software’s which can perform segmentation using these methods, 
such as Mango. Mango is a software developed by the Australian National University to perform 
segmentation using watershed and active contour algorithms, but it is an expensive tool. 
However, all methods are judgment-based and require user input which introduces bias. These 
conventional methods are also time consuming, require expertise, and make it difficult to 
differentiate distinct phases with similar intensities and colors. The binary segmentation (pore 
and mineral) is usually considered, but it strongly impacts porous media analysis. Hence, multi-
phase segmentation is usually required. 

Deep learning convolution neural networks (CNN) have proved successful in image 
segmentation in the biomedical field [3,9] and in DRP [7,5,11]. The benefit of CNN is its ability 
to learn from patterns, textures, and features instead of color differences. Recent publications 
have proven considerable segmentation accuracy using 2D and 3D SegNet, UNet, and U-ResNet 
CNN architectures [7,5,11]. 

The current challenges with CNN are the lack to ground truth (GR) for training. The labels 
(segmented images) are manually obtained from conventional methods which already involve 
user bias. This issue is still unaddressed and not within the scope of this project. CNN usually 
requires large datasets and, due to usually limited datasets available, there can be a need for data 
augmentation. The data itself requires preprocessing to make sure the results are consistent and 
model sensitivities are controlled. 

In this project, I have built and tested 2D and 3D UNet, U-ResNet, and ResUnet using Keras and 
Tensorflow implementation in Python and trained with datasets obtained from Professor 
Christoph Arns. Intersection over union (IOU) was used as a metric to see the performance of 
each model on each phase of the predicted image. For measuring the physical accuracy of the 
models, the Euler number for each phase was computed. The 2D UNet, U-ResNet, and ResUNet 
are trained on 134 million pixels and 3D UNet, U-ResNet and ResUNet are trained on 37 million 
pixels. Due to parallel computing issues with the Tensorflow package, the image size to train on 
3D models was reduced. From multiple tests using different datasets, the models are working 
with about 99% accuracy on validation dataset with 2D while obtaining reasonable accuracy 
with 3D due to time and computing constraints. There is some significant prediction error with 
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running 3D models on phase 2 and phase 4 of our current dataset which will be addressed and 
fixed in the near future. Data augmentation was not considered but it would have been helpful 
with successful parallel computation. However, the models can be used with cloud and we can 
train with larger datasets. Mango software was used to obtain segmented labels with 
preprocessed anisotropic diffusion filter and edge enhancement applied to the images. This 
makes the model prone to user bias. However, one simple method of addressing user bias in 
multi-mineral segmentation is to simply train any one of the CNN to large and varied datasets 
enough to average out bias in segmentation [11]. 

The models will be very useful in deep learning research in DRP and can ultimately be trained 
with diverse and large data to be used as tools for segmentation. There are several advance 
models that have been developed today in the medical field which can be applied to DRP for 
more efficient and faster computations. The datasets used in this project from Professor 
Christoph Arns are available on Digital Rock Portal to help researchers to continue work and 
collaborate. This project is supervised by both Professor Christoph Arns and Professor Masa 
Prodanovic. 

The models were initially made from scratch and trained and tested using a benthimer sandstone 
dataset from the Digital Rock Portal with multi-phase labels. After receiving feedback from 
Javier Santos and extensive research, the models were improved to load the data properly and 
obtain better accuracy and results. The improved models were then tested on the images obtained 
from Professor Arns and significant results were obtained with mean IOU and accuracy of about 
99% on the validation dataset. For 3D models, the phase 2 and phase 4 predictions were 
significantly different. Some interesting results showed how 2D predictions had higher IOU but 
the physical accuracy, like Euler number, was significantly different. In all measures, the 
ResUNet model seemed to perform the best in both 2D and 3D over other models as well as the 
U-ResNet for 3D. The biggest challenge in this process was to train the models and work 
remotely in Austin on the ct00 computer in Sydney. Because of parallel computing and time 
constraints, the image size to train 3D models was reduced. However, the models can be trained 
on large image sizes if they are compiled successfully on all GPUs. The GPUs used in this 
project were three Nvidia Titan Xp processing units. 

Motivation 

CNNs have played significant roles in DRP from predicting permeability and other porous media 
properties [2,10]. In recent publications, various networks have been tested on different samples 
[7,5,11]. However, there are only few works that have been performed with 3D segmentation in 
DRP and data augmentation has been the necessary step in most cases due to computational 
limitations. However, we have enough data with enough diversity to train the network without 
any data augmentation. The computational resource was available, but there were constraints due 
to some technical issues with remote connection and Tensorflow API. However, I was still able 
to train the network and obtain results for quality assessment. Usually, 2D slice wise 
segmentation with CNN gives considerably good results but inherently fails to capture context in 
adjacent slices, most importantly connectivity, which is important information for prediction of 
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segmentation maps. 3D CNNs address this by capturing the entire volumetric information with 
3D kernels and thus increase the performance of the predictions.   

Although the generalization capability of trained CNN is difficult question to address, the trained 
models have shown great results with unseen images and can be further trained and used for 
further research into developing a segmentation tool. Nevertheless, if the models are trained 
enough with large and diverse datasets with continuously newly developed segmentation CNNs 
as in medical field, such as HRNetV2 [15], using controlled parameters, this could result in a 
very efficient 2D and 3D segmentation tool. 

 

DATASETS AND WORKFLOW 

 

 

Fig. 1 – Deep learning workflow 

The workflow of this project is to use grayscale and segmented data from Professor Christoph 
Arns and split it into testing and training. The CNN model is then trained and tested for 
segmentation quality assessment. My intention is to establish a comparison between UNet, U-
ResNet, and ResUNet CNNs for each 2D and 3D to see how each network performs and how 
generalized the model becomes after it is trained. The gray scale images are already preprocessed 
with anisotropic diffusion and edge enhancement. The workflow is shown in Figure 1. 

The data that is used in this model consist of Castlegate, Leopard with 4 phases and Bentheimer 
with 3 phases. The 2D UNet, U-ResNet, and ResUNet are fed with total of 2,400 5122 images and 
3D UNet, U-ResNet, and ResUNet with total of 18 1283 images.  For 2D UNet and U-ResNet, the 
grayscale images are converted from netcdf files to tiff file format and then applied with min-
max normalization to set all pixel values between 0 to 1. The segmented phases are divided into 
4 categories and converted into binary. For 2D UNet, U-ResNet, and ResUNet, the gray scale and 
their constituent segmented images as well as the 4 separated phases are shown below for both 
2D and 3D models in Figures 2 and 3. 
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Fig. 2 – 5122 images with 4 categorical phases used in 2D UNet, U-ResNet, and ResUNet 

 

 

 

 

Fig. 3 – 1283 images with 4 categorical phases used in 3D UNet, U-ResNet, and ResUNet  

Bentheimer 
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Castlegate 

Bentheimer 
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Leopard 
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The dataset for 2D UNet, U-ResNet, and ResUNet is split into 80% training and 20% in 
validation. The dataset for 3D UNet, U-ResNet, and ResUNet is split into 90% training and 10% 
(2 images: Leopard and Castlegate) in validation. The tomograms are converted to float 32 and 
segmented images are 8 bits. The testing data of unseen Bentheimer, Leopard and Castlegate of 
same sizes are used with a total of 10 images for 2D and 2 images for 3D for testing evaluation. 
The 2D models are tested on 2 images (Castlegate and Leopard) and 3D models are also tested 
on 2 images (Benthimer and Castlegate). 

Balanced weights are applied on each class to obtain balanced distribution of labels, which 
produces weights to equally penalize under or over-represented classes in the training set. 

 

CNN ARCHITECTURES 

Basics 

CNNs are a part of deep learning methods and are widely used in image characterization 
problems. The convolution layers extract important features from the input layers. These 
convolution layers are integrated in a neural network which helps to translate features obtained 
from the previous layers to the given output phases. The CNN networks used in this project are 
UNet, U-ResNet, and ResUNet for both 2D and 3D image segmentation. The basic layers in CNN 
are 

1) Input Layer: Grayscale images data which is inputted in the CNN. 

2) Convolutional Layer: Input image is convolved with filters to generate new maps.  

3) ReLU Layer: Activation function for convolution to introduce nonlinearity in the system. 
The ReLU layer applies the function 𝑓𝑓(𝑥𝑥)  = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥 ) to all values in the input 
volume. The logic behind ReLU is that this layer changes all the negative values to zero. 

4) Max Pooling Layer: Down-sampling layer which reduces image size by summarizing 
data by choosing local maximum sliding window across feature maps. 

5) Up Sample and Transpose: Up-sampling layers which increase the image size with 
concatenation from saved feature maps during max pooling. 

6) Softmax Layer: Another activation function which produces a class-by-class probability 
distribution such that the total sum of outputs is equal to one. 

1) UNet 

I adopted UNet from biomedical segmentation works. In most segmentation tasks, basic UNet is 
adapted and modified. The 2D and 3D UNet network used in the project is illustrated in Figures 
4 and 5. The network is developed with encoding and decoding process. The encoding consists 
of input layer, convolution layer followed by ReLU activation, batch Normalization, and max 
pooling operation. The image size is reduced in the process while the filters (feature channels) 
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are doubled. The decoding consists of up convolution transpose layer, convolution layer 
followed by ReLU activation, batch Normalization and softmax activation layer before the 
output layer. The UNet transfers the entire encoding feature map (before max pooling operation) 
to decoding process to help up sample back to original image size; this process is called 
concatenation. The UNet network is described in [3,9]. 

 

 

 

Fig. 4 – 2D UNet Architecture 
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Fig. 5 – 3D UNet Architecture 

 

2) U-ResNet 

U-Resnet is a hybrid network obtained from ResNet and UNet. It is a combination of the short 
and long skip connections and concatenation that permit the networks to scale well with 
increasing complexity. There are three convolution blocks applied in each layer with residual 
convolution block added after first convolution before max pooling to make the network deep. 
A recent publication [11] has shown that U-ResNet has outperformed other networks. The 2D 
and 3D U-ResNet network is illustrated in Figures 6 and figure 7. The U-ResNet network is 
described in [11].  
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Fig. 6 – 2D U-ResNet Architecture 

 

 

 

Fig. 7 – 3D U-ResNet Architecture 
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3) ResUNet 

ResUNet is a hybrid network obtained from U-ResNet and UNet. ResUNet is also a combination 
of long skip connections and concatenation that permit the network to scale well with increasing 
complexity. The difference is that there are two convolution blocks in one layer with batch 
normalization and activation applied before the convolution. There is no max pooling layer but 
an addition layer where the residual convolution block is added from input. Like UNet, ResUNet 
transfers the entire encoding feature map from the addition layer to decoding process to help up 
sample back to the original image size. The network is shorter compared to UNet and U-ResNet 
used in this project. Figures 8 and 9 shows 2D and 3D ResUNet used in this study. 

 

 

 

Fig. 8 – 2D ResNet Architecture 
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Fig. 9 – 3D U-ResNet Architecture 

 

Loss function, Activation Layer, and Parameters 

Cross entropy and softmax layer are used as loss function and last activation layer respectively 
for all 2D and 3D models. 

Softmax squashes a vector in the range (0, 1) and all the resulting elements add up to 1. It is 
applied to the output scores (si). As elements represent a class or phase C, they can be interpreted 
as class probabilities. Cross entropy XE is calculated between the one-hot mineral label vectors, 
m and f(si). Softmax and cross entropy loss is computed using Equations 1 and 2, respectively. 
In Keras, it is referred to ‘binary_crossentropy.’ 

 𝑓𝑓(𝑠𝑠𝑠𝑠) = 𝑒𝑒𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑠𝑠𝑠𝑠 𝐶𝐶
𝑠𝑠

  Eq. 1 

 
 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 𝑙𝑙𝐶𝐶𝑠𝑠𝑠𝑠 =  ∑ 𝑚𝑚𝑙𝑙𝐶𝐶𝑚𝑚(𝑓𝑓(𝑠𝑠𝑠𝑠))𝑁𝑁

𝑖𝑖=1  Eq. 2 

For 2D I used 50 epochs with batch size of 6 and for 3D I used 375 epochs with batch size of 1. 
The learning rate is reduced if the accuracy is not reduced and the best model is saved with 
maximized loss. 

Metrics and Accuracy Measures 

For metric, I used intersection of union (IOU) for all 2D and 3D models.  
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Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, 
which first computes the IOU for each semantic class and then computes the average over 
classes. IOU is defined in Equation 3. 

 𝐼𝐼𝐼𝐼𝐼𝐼 = (𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒)
(𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒 𝑛𝑛𝑒𝑒𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒) Eq. 3 

True-positives are those pixels that belong to the class and are correctly predicted as the class, 
false-negatives are those pixels that belong to the class but are incorrectly predicted as a different 
class, and false-positives are those pixels that belong to a different class but are predicted as the 
class. The IOU score is calculated for each class separately and then averaged over all classes to 
provide a global mean IOU score of our semantic segmentation prediction. The model during 
training minimizes the false positive and maximizes the true positive. 

The IOU is a value between 0 and 1, where a larger value indicates a more accurate 
segmentation. The mean IOU is then the mean value across all the classes in the dataset. 

For physical accuracy measure, I am calculating Euler number which is a measure of the 
topology of an image. It is defined as the total number of objects in the image minus the number 
of holes in those objects. I am using 8 connected neighborhoods. Euler number is calculated for 
each phase and a comparison is conducted between all phases of each models on different 
sandstones. 

 

RESULTS AND SEGMENTATION QUALITY COMPARISON 

The prediction results were generated from all models for validation and testing dataset. The 
IOU and Euler number are compared in validation dataset and testing dataset to perform the 
segmentation quality assessment. The 3D models had significant problems as the output was 
non-binary image for all phases and phase 2 and phase 4 were specifically had lower IOU which 
skewed the mean IOU. To tackle that for now I used reasonable thresholding to make images 
binary to compute Euler number. Table 1 shows the thresholds used for all 3D model for 
prediction values on both validation and testing dataset.  

Figures 11-15 show the visuals of prediction and ground truth generated with the corresponding 
histogram for all models for validation dataset. Figures 18-23 show the visuals of prediction and 
ground truth generated with the corresponding histogram for all models for testing dataset 
Figures 16-17 show the Euler number comparison for all models for each phase in each 
sandstone on validation dataset. Figures 24-25 show the Euler number comparison for all models 
for each phase in each sandstone on testing dataset. Tables 2 and 3 shows the IOU comparison of 
all models on validation and testing datasets, respectively. 
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Phase Threshold 
1 > 0.5999 
2 > 0.0699 
3 > 0.5 
4 > 0.029599 

 

Table 1 – 3D Prediction Value Thresholds 

 

Validation Dataset 

2D U-ResNet 

Leopard 
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Castlegate 
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Bentheimer 

 

  

 

 

Fig. 10 – 2D U-ResNet Prediction vs Ground Truth 
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2D UNet 

Leopard 
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Castlegate 
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Bentheimer 

 

 

 

Fig. 11 – 2D UNet Prediction vs Ground Truth 
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2D ResUNet 

Leopard 
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Castlegate 
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Bentheimer 

 

 

 

 

 

Fig. 12 – 2D ResUNet Prediction vs Ground Truth 
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3D U-ResNet 

Leopard 
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Castlegate 

 

 

 

 

Fig. 13 – 3D U-ResNet Prediction vs Ground Truth 
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3D UNet 

Leopard 
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Castlegate 

 

 

 

 

Fig. 14 – 3D UNet Prediction vs Ground Truth 
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3D ResUNet 

Leopard 
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Castlegate 

 

 

 

 

Fig. 15 – 3D ResUNet Prediction vs Ground Truth 
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Validation Euler Comparison 

2D Castlegate 
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2D Leopard
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2D Bentheimer 

 

Fig. 16 – 2D Validation Euler Comparisons 
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3D Leopard 

 

 

  



IMAGE SEGMENTATION USING DEEP LEARNING 
 
 

 

33 

3D Castlegate 

 

Fig. 17 – 3D Validation Euler Comparisons 

 

 
Mean IOU Threshold Adjusted 

(Mean IOU) 

Training Validation Validation 

2D 
U-ResNet 0.9996 0.9994  

2D 
UNet 0.9653 0.9702  

2D 
ResUNet 0.9842 0.9853  

3D 
U-ResNet 0.6166 0.4761 0.931 

3D 
UNet 0.5548 0.4586 0.922 

3D 
ResUNet 0.5527 0.4997 0.9377 

 

Table 2 – Validation Mean IOU 
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By examining the prediction results from validation datasets, the 2D models showed about 0.96 
to 0.999 IOU on validation datasets. Note: for 3D models, the IOU for validation is low due to 
significant problems of prediction with phase 2 and phase 4 which skewed the mean IOU, but 
with adjusted threshold its around 0.92 to 0.93 IOU. The results were very interesting for Euler 
number for 2D models. All 2D models for Bentheimer, Leopard and Castlegate sandstones fails 
to predict accurate Euler number for phase 1 (porosity) when compared to the ground truth (GT), 
while 2D ResUNet outperforms all other models in other phases and is consistent with the 
ground truth. The Euler number for 3D models comes very consistent with ground truth as 3D 
convolutions proves to preserve the connectivity. However, since we are using 1282 image size 
and using thresholds to adjust phase 3 and phase 4, it is not a very fair comparison. However, 3D 
UNet and 3D ResUNet performs better then 3D UNet. With more training datasets, the results 
would be much better. 
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Testing Dataset  

2D U-ResNet 

Castlegate 
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Leopard 

 

 

 

Fig. 18 – 2D U-ResNet Prediction vs Ground Truth 
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2D UNet 

Castlegate 

 

 

 

 

  



IMAGE SEGMENTATION USING DEEP LEARNING 
 
 

 

38 

Leopard 

 

 

 

 

Fig. 19 – 2D UNet Prediction vs Ground Truth 
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2D ResUNet 

Castlegate 
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Leopard 

 

 

 

 

Fig. 20 – 2D ResUNet Prediction vs Ground Truth 
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3D U-ResNet 

Bentheimer 
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Leopard 

 

 

Fig. 21 – 2D U-ResNet Prediction vs Ground Truth 
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3D UNet   

Bentheimer 

 

 

 

 

Leopard 
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Fig. 22 – 3D UNet Prediction vs Ground Truth 
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3D ResUNet 

Bentheimer 

 

 

 

 

  



IMAGE SEGMENTATION USING DEEP LEARNING 
 
 

 

46 

Leopard 

 

 

 

 

Fig. 23 – 3D ResUNet Prediction vs Ground Truth 
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Testing Euler Comparison  

2D Castlegate 

 

  



IMAGE SEGMENTATION USING DEEP LEARNING 
 
 

 

48 

2D Leopard 

 

Fig. 23 – 2D Testing Euler Comparisons 
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3D Bentheimer
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3D Leopard 

 

Fig. 24 – 3D Testing Euler Comparisons 

 

 Mean IOU 
Testing 

2D 
U-ResNet 0.8373 

2D 
UNet 0.8079 

2D 
ResUNet 0.8243 

3D 
U-ResNet 0.8845 

3D 
UNet 0.894 

3D 
ResUNet 0.93 

 

Table 3 – Testing Mean IOU 
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By examining the prediction results from testing datasets, the 2D models showed about 0.80 to 
0.83 mean IOU. Note: for 3D models, the IOU for testing is adjusted with threshold applied, 
which gave us better results than 2D ranging from 0.88 to 0.93. Again, since we have 128 x 128 
images in 3D, it’s not a fair comparison. The results are very interesting for Euler number for 2D 
models. All 2D models for Leopard and Castlegate sandstones fails to predict accurate Euler 
number for phase 1(porosity) when compared to the ground truth (GT), while 2D ResUNet 
outperforms all other models in other phases and is consistent with the ground truth. The Euler 
number for 3D models comes very consistent with ground truth as 3D convolutions proves to 
preserve the connectivity. However, since we are using 1282 image size and using thresholds to 
adjust phase 3 and phase 4, it is not a very fair comparison. Like I mentioned before there is 
significant problem in the prediction results for the 3D models and will be fixed it in the future. 
However, 3D UNet and 3D ResUNet performs better then 3D UNet.  

 

CONCLUSION AND DISCUSSION 

Image segmentation is a user bias task in DRP workflow which utilizes more time and is less 
efficient. Deep learning CNNs have changed the game in recent years to do fast segmentation 
without user bias. In this study I trained 2D and 3D UNet, U-ResNet and ResUNet semantic 
segmentation models on Bentheimer, Leopard and Castlegate sandstones. The goal was to see 
how each model predict and become generalized when shown to unseen images. The 2D UNet, 
U-ResNet, and ResUNet are trained on 134 million pixels and 3D UNet and U-ResNet are trained 
on 37 million pixels. Due to parallel computing issues with the Tensorflow package, the image 
size to train on 3D models was reduced. For 3D models, the phase 2 and phase 4 predictions 
were significantly different. Some interesting results showed how 2D predictions had higher IOU 
but the physical accuracy, like Euler number, was significantly different. In all measures, the 
ResUNet model seemed to perform the best in both 2D and 3D over other models as well as the 
U-ResNet for 3D. The results of this study are not limited to sandstone samples, but the network 
models can be used for any samples. My next step is to correct the 3D models and reevaluate the 
results. 
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